Дарим первый урок с репетитором бесплатно
Оставьте заявку и получите первый урок в подарок
Эллипс
Обновлено: 23 июл 2024
Эллипс
Эллипс — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость. На рисунке ниже показано несколько примеров.
Эллипс - это фигура, в результате сечения конуса и прямого кругового цилиндра
Эллипс симметричен относительно горизонтальной и вертикальной осей, как показано на рисунке выше. Максимальное расстояние между двумя точками происходит вдоль горизонтальной оси (называемой главной осью или поперечным диаметром), а минимальное расстояние между двумя точками — вдоль вертикальной оси (называемой малой осью или сопряженным диаметром). Антиподальные точки — это любые две точки по периметру эллипса, так что соединяющий их отрезок линии должен проходить через центр с эллипса (что происходит на пересечении горизонтальной и вертикальной осей). Эллипс симметричен относительно его большой и малой осей.
Полуось — это та часть оси, которая лежит между центром \(C\) и периметром эллипса. Полуоси, принадлежащие к главной оси — большая полуось, а полуось, принадлежащих к малой оси - малая полуось. На приведенной выше рисунке мы обозначили каждую из двух полуосей \(a\) и каждую из двух полуосей \(b\). Точки, показанные красным цветом по периметру эллипса, являются точками, где большая и малая оси пересекают периметр эллипса. Это вершины эллипса. Вершины - это точки, в которых кривизна эллипса максимальна (т. е. где главная ось пересекает периметр эллипса).
Как найти фокусы эллипса
Сумма расстояний от фокусов до любой точки эллипса есть постоянная
Расстояние между любым из фокусов и центром эллипса называется фокусным расстоянием и будет зависеть от длины главной и малой осей. Мы обозначили отрезки линии, соединяющие каждый фокус с центром эллипса \(C\). Длину\( c\) (т. е. Фокусное расстояние) можно найти по следующей формуле:
Часто задаваемые вопросы:
✅ Как связаны полуоси эллипса с его геометрической структурой?
↪ Большая полуось "a" определяет ширину эллипса, а малая полуось "b" - его высоту. Соотношение a и b определяет степень "приплюснутости" или "растянутости" эллипса.
✅ Какую роль играет фокусное расстояние в эллипсе?
↪ Фокусное расстояние "f" определяет расстояние от центра эллипса до каждого из его фокусов и связано с полуосью через формулу: \(f = √(a^2 - b^2)\).
✅ Каковы основные характеристики эллипса?
↪ Основные характеристики эллипса - большая и малая полуоси, фокусы, эксцентриситет и фокусное расстояние.
Показать содержимое
Дарим в подарок бесплатный вводный урок!
Репетиторы
Специализация
- Подготовка к ЕГЭ по математике (профильный уровень)
- Репетитор по химии для подготовки к ОГЭ
- Репетитор для подготовки к ЕГЭ по физике
- Репетитор по английскому языку для подготовки к ОГЭ
- Английский язык для начинающих
- Репетитор по английскому для взрослых
- Репетитор для подготовки к ВПР по русскому языку
- Репетитор по биологии для подготовки к ОГЭ
- Репетитор по географии для подготовки к ЕГЭ
- Репетитор по информатике для подготовки к ЕГЭ