Рациональные числа

В прошлой статье преподаватель математики Дмитрий Айстраханов рассматривал целые числа и их основные характеристики. Продолжая тему, в новой статье разбираемся с рациональными числами.

 

Еще пару тысяч лет назад древние люди столкнулись с необходимостью

измерять части целого при вычислении веса, площади земельного участка,

длины и т.д., что привело их к понятию доли целого (дроби): половина, четверть, треть и т.п. Достоверное известно, что древние египтяне, шумеры и греки использовали дроби в вычислениях.

 

Рациональным является число, которое можно представить обыкновенной дробью, в которой числитель – целое число, а знаменатель – натуральное число. Так какие числа являются рациональными? Дробные. Выражение «дробное число (дробь)» является синонимом термина «рациональное число».  Иногда так называют любое нецелое число. Надо помнить, что нецелые рациональные числа являются частным случаем дробных чисел. Различают правильные (модуль числителя меньше модуля знаменателя), неправильные (дробь не являющаяся правильной) и смешанные (неправильная дробь представляется в виде суммы целого числа и правильной дроби). Рациональные числа меньшие по модулю единицы, представляются правильной дробью. Большее или равное единице по модулю рациональное число соответствует неправильной дроби.

 

Дейтсвия с рациональными числами:

  

1. Сложение (вычитание). В случае равных знаменателей сложение (вычитание) рациональных чисел сводится к сложению (вычитанию) числителей. В случае разных знаменателей требуется приведение дробей к одинаковым знаменателям, который является наименьшим общим кратным знаменателей. Можно общий знаменатель получить перемножением заданных знаменателей.

2. Умножение рациональных чисел сводиться к умножению числителей и отдельно умножению знаменателей.

Деление двух дробей сводится к умножению первой дроби на обратную дробь (знаменатель идет в числитель, числитель идет в знаменатель) второй дроби. Это правило используется и при вычислении многоэтажных дробей.

3. Вычисления с рациональными числами производить следует вручную, требуется отличное знание таблицы умножения и навыков устного счета.

Автор: Дмитрий Айстраханов

 
 
Наши преподаватели
Репетитор по математике
Стаж (лет)
18
Образование:
Уральский государственный университет им. А. М. Горького
Проведенных занятий:
2
Форма обучения:
Дистанционно (Скайп)
Репетитор 5-11 классов по русскому языку. Индивидуальный подход к ученику, использование конструктора и алгоритмов в преподавании. Академические методы преподавания светской педагогической школы.
Репетитор по математике
Стаж (лет)
15
Образование:
Абаканский государственный педагогический институт
Проведенных занятий:
0
Форма обучения:
Дистанционно (Скайп)
Репетитор 2-9 классов. Английский язык-международный язык. Он открывает двери везде, развивает ум, улучшает память. Методика обучения в широком понимании одна-коммуникативная, так как язык служит средством общения. Хотите, чтобы ребёнок радовал Вас своими успехами в школе? Приглашаю учащихся на результативные занятия! Грамматика станет понятной и доступной, учащиеся 7 классов с лёгкостью сдадут ВПР!
Репетитор по математике
Стаж (лет)
5
Образование:
Российский университет дружбы народов
Проведенных занятий:
326
Форма обучения:
Дистанционно (Скайп)
Репетитор 1-9 классов. Подбираю метод работы, отталкиваясь от уровня ученика, говорю с ним на "одном" языке, объясняю сложные вещи на простых примерах. Имею опыт работы по учебникам Школа России, Школа 21 век. Готовлю учеников по программе Петерсона, готовлю к олимпиадам. Самый главный принцип, которого я придерживаюсь - это индивидуальный подход к ребенку. Занятия провожу в легкой и непринужденной обстановке.

Репетитор по математике (1 класс)

  • - Индивидуальные занятия
  • - В любое удобное для вас время
  • - Бесплатное вводное занятие

Математика 10 класс

  • - Индивидуальные занятия
  • - В любое удобное для вас время
  • - Бесплатное вводное занятие

Курсы по математике для школьников (7 класс)

  • - Индивидуальные занятия
  • - В любое удобное для вас время
  • - Бесплатное вводное занятие