Рациональные числа

В прошлой статье преподаватель математики Дмитрий Айстраханов рассматривал целые числа и их основные характеристики. Продолжая тему, в новой статье разбираемся с рациональными числами.

 

Еще пару тысяч лет назад древние люди столкнулись с необходимостью

измерять части целого при вычислении веса, площади земельного участка,

длины и т.д., что привело их к понятию доли целого (дроби): половина, четверть, треть и т.п. Достоверное известно, что древние египтяне, шумеры и греки использовали дроби в вычислениях.

 

Рациональным является число, которое можно представить обыкновенной дробью, в которой числитель – целое число, а знаменатель – натуральное число. Так какие числа являются рациональными? Дробные. Выражение «дробное число (дробь)» является синонимом термина «рациональное число».  Иногда так называют любое нецелое число. Надо помнить, что нецелые рациональные числа являются частным случаем дробных чисел. Различают правильные (модуль числителя меньше модуля знаменателя), неправильные (дробь не являющаяся правильной) и смешанные (неправильная дробь представляется в виде суммы целого числа и правильной дроби). Рациональные числа меньшие по модулю единицы, представляются правильной дробью. Большее или равное единице по модулю рациональное число соответствует неправильной дроби.

 

Дейтсвия с рациональными числами:

  

1. Сложение (вычитание). В случае равных знаменателей сложение (вычитание) рациональных чисел сводится к сложению (вычитанию) числителей. В случае разных знаменателей требуется приведение дробей к одинаковым знаменателям, который является наименьшим общим кратным знаменателей. Можно общий знаменатель получить перемножением заданных знаменателей.

2. Умножение рациональных чисел сводиться к умножению числителей и отдельно умножению знаменателей.

Деление двух дробей сводится к умножению первой дроби на обратную дробь (знаменатель идет в числитель, числитель идет в знаменатель) второй дроби. Это правило используется и при вычислении многоэтажных дробей.

3. Вычисления с рациональными числами производить следует вручную, требуется отличное знание таблицы умножения и навыков устного счета.

Автор: Дмитрий Айстраханов

 
 
Наши преподаватели
Репетитор по математике
Стаж (лет)
5
Образование:
Тираспольский государственный университет
Проведенных занятий:
42
Форма обучения:
Дистанционно (Скайп)
Репетитор по биологии 5-11 классы, химии 7-9 классы, подготовка к ОГЭ. Химия - это область чудес! Можно не любить химию, но прожить без нее в современном мире невозможно. Помогу вашему ребенку в освоении химии и биологии. Индивидуально подойду к обучению каждого ученика. Учиться легко, когда рядом хороший помощник!
Репетитор по математике
Стаж (лет)
10
Образование:
Ставропольский государственный университет
Проведенных занятий:
12
Форма обучения:
Дистанционно (Скайп)
Репетитор по информатике для 5-11 классов. Подготовка к ОГЭ, ЕГЭ. Имею победителей и призёров очных, дистанционных олимпиад по информатике и программированию, и творческих конкурсов.
Репетитор по математике
Стаж (лет)
18
Образование:
КГАУ
Проведенных занятий:
3007
Форма обучения:
Дистанционно (Скайп)
Репетитор 1-9 классов. Докажу, что математика - это просто. Использую классическую методику преподавания. Мои ученики получают высокие балы по ОГЭ. За несколько уроков изменю ваше мнение о математике!