Дарим первый урок с репетитором бесплатно
Оставьте заявку и получите первый урок в подарок
Задачи на движение: по течению и против
Обновлено: 20 мар 2024
Задачи на движение: по течению и против
При решении задач на движение, главное найти три ключевые величины: расстояние, время и скорость. Для этих величин можно записать один из законов движения:
\(S=v*t\)
Сегодня в этой статье мы познакомимся с задачами на движение по течению и против течения реки. Также рассмотрим задачи на сближение и удаление. Также стоит помнить, что в таких задачах данные величины нужно приводить к единой системе единиц.
Задача 1. Катер плыл против течения реки \(120\) км, назад он плыл, затратив на путь на \(2\) часа меньше. Найдите скорость катера без течения реки, если скорость течения \(1\) км/час.
\(\frac{120}{x+1}+2=\frac{120}{x-1}\)
\(\frac{120}{x-1}+2(x-1)(x+1)=\frac{120}{x+1}\) \(x\) не равно \(-1\) и \(+1\) так как задача не будет иметь решения.
\(120x-120+2x^2-2=120x+120\)
\(2x^2=242\)
\(x^2=121\)
\(x=11\) км/час
Ответ: \(11\) км/час.
Задача 2. Человек плывет со скоростью \(5\) км/ч. Если скорость течения равна \(1\) км/ч, то ему требуется \(1\) час, чтобы плыть к месту и вернуться обратно. Найдите расстояние до этого места.
Решение. Пусть расстояние х км и скорость по течению будет равна \(5+1=6\) км/ч. Скорость против течения тогда \(5-1=4\) км /ч. Составим уравнение \(\frac{x}{6}+\frac{x}{4}=1\), так как \(s/v=t\).
Домножим обе части уравнения на \(12\) :
\(2x+3x=12\)
Решим полученное уравнение:
\(x=\frac{12}{5}=2,4 \) (км.)
Ответ: \(2,4\) км.
Задача 3. За один час лодка проходит \(11\) км по течению и \(5\) км против течения. Найтите скорость лодки в стоячей воде.
Решение.
- \(\frac{1}{2}(a+b)=\frac{1}{2}(11+5)=\frac{1}{2}(16)=8\) (км/ч.)
Ответ: \(8\) км/час.
Задача 4. Если Максим плывет \(15\) км против течения за \(3\) часа и за это же время - \(21\) км по течению. Найтите скорость течения.
Решение.
cкорость вверх по течению равна \(\frac{15}{3}=5 \) км/ч;
cкорость вниз по течению \(\frac{21}{3}\) км/ч = \(7\) км /ч;
cостовляем уравнение и находим скорость течения \(\frac{1}{2}(7-5)\) км / ч = \(1\) (км/ч.)
Ответ: \(1\) км/ ч.
Задача 5. За один час лодка проходит \(11\) км по течению и \(5\) км против него. Найтите скорость лодки в неподвижной воде.
Решение.
- \(\frac{1}{2}(a+b)\) = \(\frac{1}{2}(11+5)=\frac{1}{2}16=8 \) (км/ч.)
Ответ: \(8\) км/ч
Задача 6. Вика плывет со скоростью \(4\) км/ч. Если скорость течения равна \(1\) км/ч и ей требуется \(1\) час, чтобы плыть к месту и вернуться обратно. Найдите расстояние до этого места.
Решение.
Пусть расстояние \(x\) км.
Скорость Вики по течению равна \(4+1=5\) км/ч.
Скорость Вики против течения равна \(4-1=3\) км/ч.
Составим уравнение: \(\frac{x}{5}+\frac{x}{3}=1\) так как \(s:v=t\).
\(3X+5x=15\)
= >\(8x=15=1,875\) (км.)
Ответ: \(1,875\).
Дарим в подарок бесплатный вводный урок!
Репетиторы
Специализация
- Репетитор по алгебре
- Репетитор по профильной математике ЕГЭ
- Репетитор для подготовки к сочинению ЕГЭ по русскому
- Английский язык для начинающих
- Репетитор по английскому для взрослых
- Репетитор для подготовки к ОГЭ по истории
- ВПР по физике
- Репетитор по биологии для подготовки к ОГЭ
- Репетитор по географии для подготовки к ЕГЭ
- Программирование Pascal