Свойства корней
Предметы
Специализации
- Подготовка к ЕГЭ по математике (базовый уровень)
- Репетитор по химии для подготовки к ОГЭ
- Репетитор для подготовки к ЕГЭ по физике
- Подготовка к олимпиадам по английскому языку
- Репетитор по грамматике английского языка
- ВПР по физике
- Репетитор для подготовки к ЕГЭ по обществознанию
- Репетитор по географии для подготовки к ЕГЭ
- Подготовка к ОГЭ по литературе
- Scratch
Как извлечь корень из числа. А для этого рассмотрим само понятие корня и свойства корней.
Если алгебраическое выражение содержит корень, то оно называется иррациональным. Корнем любой степени из \(a\) является число \(n\), при возведении в эту степень мы получаем \(a\).
\(^n \sqrt{a}=a^{\frac{1}{n}}\)
“\(n\)”-показатель или степень корня, натуральное число, которое больше или равно \(0\). “\(a\)”- подкоренное выражение.
Действие, с помощью которого вычисляется корень заданного числа, называется извлечением корня из \(a\). Результат извлечения корня называется радикалом.
Свойства корней
Два значения будут иметь корень четной степени. Они будут находиться на противоположном знаке в абсолютных равных условиях.
Корень четной степени отрицательного числа не существует, так как при возведении любого вещественного числа в степень с чётным показателем результатом будет неотрицательное число.
Значение будет положительным из корня нечетной степени из положительного числа. Корень нечетной степени из отрицательного числа будет иметь отрицательное значение.
Корень нуля всегда равен нулю.
Извлечения корня четной степени множество действительных чисел не замкнуто. Результат этого действия неоднозначен.
Что касается извлечения корня нечетной степени, множество вещественных чисел замкнуто. Результат этого действия однозначен.
Свойства корней
- \( ^n\sqrt{a b} = ^n\sqrt{a} ·^n\sqrt{b}\) \(a,b \geq 0\)
- \( ^n\sqrt{\frac{a}{ b}} = \frac{^n\sqrt{a}} {^n\sqrt{b}}\)
- \( ^n\sqrt{a^k}= ^n\sqrt{a}^k\)
- \( ^n\sqrt{ ^m\sqrt{n}}= ^{nm}\sqrt{n}\)
- \( ^n\sqrt{a^n}=|a|\) \(\begin{equation*} \begin{cases} a,a \geq0\\ -a,a<0 \end{cases} \end{equation*}\)
- \( ^n\sqrt{0}=0\)
- \( ^n\sqrt{1}=1\)
- \( ^n(\sqrt{a^n})=a \) \(a \geq 0\)
- \( ^k\sqrt{a^{kn}}= \sqrt{a^{n}}\)
Наши преподаватели
Репетитор по математике
Стаж (лет)
31
Образование:
Белорусский государственный педагогический университет
Проведенных занятий:
1401
Форма обучения:
Дистанционно (Скайп)
Репетитор по математике
Стаж (лет)
29
Образование:
Калужский государственный педагогический институт им. К.Э. Циолковского
Проведенных занятий:
164
Форма обучения:
Дистанционно (Скайп)
Репетитор по математике
Стаж (лет)
32
Образование:
Пятигорский государственный институт иностранных языков
Проведенных занятий:
205
Форма обучения:
Дистанционно (Скайп)