ЕГЭ по математике, базовый уровень. Задачи на движение по прямой

 
Предлагаем разобрать три задачи, приведенные ниже. Это задание № 11 из ЕГЭ прошлых лет, рекомендованные как тренировочные.
 
Задача № 1
 
Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью 24 км/ч, а вторую половину пути – со скоростью, на 16 км/ч большей скорости первого, в результате чего прибыл в пункт B одновременно с первым автомобилем. Найдите скорость первого автомобиля. Ответ дайте в км/ч.
 
Решение
 
Пусть  «х» км/ч — скорость первого автомобиля, тогда скорость второго автомобиля на второй половине пути равна:
 
х + 16 км/ч
 
Примем расстояние между пунктами за «1».
 
Автомобили были в пути одно и то же время, отсюда получим уравнение:
 
 \({1 \over x} ={0,5 \over 24}+{0,5\over {x+16}}\)    <=>
 
 <=> 48·(х + 16) = х·(х + 16) + 24·х   <=>
 
<=>  х2 – 8х – 768 = 0
 
х1 = 32
х2 = -24
 
Так как по смыслу задачи х > 0, то решением будет первый корень. 
Таким образом, скорость первого автомобиля была равна 32 км/ч.
 
Ответ: 32.
 

Задача №2
 
Из пункта A в пункт B одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 13 км/ч, а вторую половину пути – со скоростью 78 км/ч, в результате чего прибыл в пункт В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 48 км/ч. Ответ дайте в км/ч.
 
Решение
 
Пусть «х» км/ч – скорость первого автомобиля, тогда скорость второго автомобиля на первой половине пути равна:
 
х – 13 км/ч
 
Примем расстояние между пунктами за «2».
Автомобили были в пути одно и то же время, отсюда получим уравнение:
 
\({2 \over x} ={1 \over 78}+{1\over {x-13}}\)   <=>
 
<=> 2·78·(х - 13) = х2 – 13х + 78·х   <=>
 
<=>  х2 – 91х + 2028 = 0
 
х1 = 52
х2 = 48
 
Так как по условию задачи х > 48, то решением будет первый корень. 
Таким образом, скорость первого автомобиля была равна 52 км/ч.
 
Ответ: 52.
 

Задача № 3
 
Из пункта A в пункт B, расстояние между которыми 75 км, одновременно выехали автомобилист и велосипедист. Известно, что за час автомобилист проезжает на 40 км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт B на 6 часов позже автомобилиста. Ответ дайте в км/ч.
 
Решение
 
Пусть «х» км/ч – скорость велосипедиста, тогда скорость автомобилиста равна:
 
х +40 км/ч.
 
Велосипедист был в пути на 6 часов больше, отсюда получим уравнение:
 
\({75 \over x} -{75\over {x+40}}=6\) <=>
 
<=> 500 = х(х + 40)   <=>
 
<=>  х2 – 40х - 500 = 0
 
х1 = 10
х2 = -50
 
Так как по условию задачи х > 0, то решением будет первый корень. 
Таким образом, скорость велосипедиста была равна 10 км/ч.
 
Ответ: 10.
 
 
Наши преподаватели
Репетитор по математике
Стаж (лет)
6
Образование:
БГУ
Проведенных занятий:
1057
Форма обучения:
Дистанционно (Скайп)
Репетитор 5-11 классов. Люблю математику, так как главная сила математики состоит в том, что вместе с решением одной конкретной задачи она создаёт общие приёмы и способы, применимые во многих ситуациях, которые даже не всегда можно предвидеть.
Репетитор по математике
Стаж (лет)
3
Образование:
Новосибирский государственный технический университет
Проведенных занятий:
334
Форма обучения:
Дистанционно (Скайп)
Репетитор 5-9 классов. Люблю математику за то, что она на практике показывает, что любую задачу можно решить. Считаю, что каждый ребенок может знать математику, нужно лишь немного терпения. Готов всегда помочь ученику, ответить на его вопросы, объяснить сложные вещи простым и понятным языком. С нетерпением буду ждать Вас на своих занятиях!
Репетитор по математике
Стаж (лет)
5
Образование:
Пермский государственный гуманитарно-педагогический университет
Проведенных занятий:
897
Форма обучения:
Дистанционно (Скайп)
Репетитор 5-9 классов. Я люблю математику за ее точность и однозначность, она помогает мыслить логически, формирует алгоритмическое мышление. При работе с учениками использую наглядное представление материала, игры, таблицы с кратким теоретическим материалом. Верю в то, что главное не отметка, а те знания, которые ученик усвоил и может применить на практике.

Математика по Skype

  • - Индивидуальные занятия
  • - В любое удобное для вас время
  • - Бесплатное вводное занятие

Курс "Положительные и отрицательные числа" (6 класс)

  • - Индивидуальные занятия
  • - В любое удобное для вас время
  • - Бесплатное вводное занятие

Тригонометрия (краткий курс)

  • - Индивидуальные занятия
  • - В любое удобное для вас время
  • - Бесплатное вводное занятие