Как решить квадратное уравнение

Квадратное уравнение – что это?
 
Квадратное уравнение – это уравнение, которое имеет вид:
\(ax^2+bx+c=0\)
 
Что такое a, b и с? Это коэффициенты. У каждого есть свои названия:
а – старший коэффициент;
b – средний коэффициент;
с – свободный член;
a, b, c – абсолютно любые числа. Но здесь важно: а ≠ 0.
 
Почему именно так? Давай поразмышляем: если предположить, что а все же будет равно 0, то наше уравнение уже не будет квадратным и превратится в линейное:
\(bx+c=0\)
А такие уравнения ты уже решать умеешь, поэтому мы вернемся обратно к квадратным уравнениям.
 
Как выглядит квадратное уравнение?
 
К слову, квадратное уравнение может выглядеть необязательно как стандартное\(ax^2+bx+c=0\)
Оно может иметь и другой вид, например:
\(ac^2+bx=c\)
(здесь свободный член с находится по другую сторону знака равно) или \(ax^2=c\) (тут средний коэффициент b = 0, а с находится по другую сторону знака равно). Также коэффициенты могут быть отрицательными и т.д.
Однако следует помнить, что абсолютно любое квадратное уравнение можно привести к стандартному виду:
\(ax^2+bx+c=0\)
 
Как же решать квадратное уравнение?
 
Существует всего три результата решения квадратного уравнения:
  1. Уравнение не имеет решения.
  2. Уравнение имеет только один корень.
  3. Уравнение имеет два корня.
 
Как определить, под какой из этих случаев подпадет наше квадратное уравнение? Для этого нам понадобится дискриминант: он нам поможет в решении квадратного уравнения. Дискриминантом (образован от латинского discrimino – «разбираю»)  мы обозначим следующее выражение:
\(D=b^2-4ac\),
где D – дискриминант, а a, b, c – коэффициенты квадратного уравнения.
 
Чем конкретно нам может помочь дискриминант?
  1. Если D < 0 – то квадратное уравнение не имеет решений;
  2. Если D = 0 – то уравнение будет иметь только один корень;
  3. Если D > 0 – то уравнение имеет два решения.
То есть благодаря дискриминанту мы будем знать о результате и количестве решений квадратного уравнения.
Итак, мы посчитали, чему равен наш дискриминант, потом определили количество решений уравнения, что дальше? А дальше определяем корни квадратного уравнения по формулам.
  1. В первом случае, когда D < 0, считать ничего не нужно, т.к. уравнение не имеет решений. Это значит, что корней квадратного уравнения на множестве действительных чисел нет.
  2. Во втором варианте, когда D = 0, решение будет одно и единственный корень квадратного уравнения будет равен: \(x=\frac{-b}{2a}\)
  3. Третий случай, при D > 0, наиболее сложный из всех трех возможных: в ответе должно получиться два корня квадратного уравнения.
\(x_1=\frac{-b+\sqrt D}{2a}\)– первый корень квадратного уравнения;
\(x_1=\frac{-b-\sqrt D}{2a}\)– второй корень квадратного уравнения.
 
Решение квадратных уравнений на самом деле не настолько сложное, как кажется на первый взгляд. Всего-то нужно запомнить несколько формул и алгоритм действий. Главное - не бояться вида квадратных уравнений, мы уверены: все у тебя получится! Запишись на бесплатный пробный урок тут и разберись с тем, что тебе непонятно.
Специально для Вас!
1 бесплатный урок от "Альфа-школы".
Ваш ребенок полюбит математику, убедитесь сами!
 

Нажимая кнопку "Получить бесплатный урок", вы даете согласие на обработку персональных данных в соответствии с политикой конфиденциальности.

x